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Current 50-250 kA 
Risetime <50 ns 
Charge transfer ~0.5 Coulombs/pulse 
Jitter <<50 ns 
PRF 50-150 pps 
Pulse Width 50ns-500ns 
.Lifetime 107 - 108 pulses 
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In order to establish the efficiency of using pressurized 
flowing dielectric switches for Directed Energy 
applications a two-phase program was undertaken with an 
industrial team; Alpha Omega Power Technologies 
(AOPT) and The Boeing Company.  During phase 1 of 
the program a single shot, flowing dielectric switch was 
built and instrumented to evaluate the flow required to 
sweep the byproducts from the interelectrode gap 
subsequent to reapplication of voltage, and the effect of 
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pressure of the liquid, 2.12-4.04 MPa (308-587 psi) no 
bubbles were formed by the charge injection [4]. 

In order to estimate the bubble radius, the losses must 
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electrodynamics of the arc’s plasma.  The gas bubbles 
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an unsaturated solution, above the critical pressure for 
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range.  Kattan also found that the radius of the bubble 
was less than the theoretical value for many liquids [4].  
Thus the radius calculated in Table 2 was, we believe, the 
worst case condition or the largest bubble radius that 
would form. 
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Figure 2. Drawing of the single shot CVT s
 

The concept validation switch shown in figu
designed to validate scaling of the flowi
dielectric switch to high pressure and to dete
breakdown voltage of small subcentimeter gaps
switch in figure 2 incorporates adjustable 
allowing the electrode separation to be adjus
0.1cm up to a centimeter in spacing.  Optical 
were also integrated with the design allowing 
framing and high speed camera diagnostic
integrated into the test stand. This allowed our
characterize the bubble formation and 
expansion velocity.  For a 0.2cm electrode
calculated arc inductance of the switch 
(15nH/cm x.2cm). For the 1.6Ω system th

wit

r
ng
rm

el
t
v

s
 

by
 
w
e 

inductive rise time of the switch is 3.8ns. The ca
-11

electr mental tes
copper tungsten composite, K33, with an e rode 

eter of  (1.5 in  The ch housing and 
insulator were designed to operate a es up to 3000 

. 

ab s l ulated using 
a B  

loss bubble Gas 
olume 

ch 

e 2 was 
 liquid 
ine the 

variable delay times between frames.
can range between 5ns-5ms for each fram
electrode area was back-lighted usi
lights and flashlamps. 

A circuit simulation of the integra

. The 
ectrodes 
ed from 
iewports 
both the 
 to be 
team to 
product 
gap the 
as 3nH 
10-90% 
lculated 

ns. The 
ts was a 

hardware, and load showed a ci
approximately 80-100ns due to the 
sections and diagnostic sections insta
90% rise time was calculated to be
switch was not the limiting factor in th

Experiments were conducted at atm
up to 13.8MPa (2000 psig).  The bre
reported were conducted at a gap spa
voltage breakdown of the 0.2cm elect
in Figure 3.  Each data point repres
average of ten breakdowns us
electrodes.  The error bars repr
deviation for each data set at the test 
fit shown is a second order polyno
approximation.  The 

10-90% risetime of the switch was 10
ode materiel used for the experi

lect
diam  3.81cm ches).  swit

t pres urs
psig
 

T le 2. Bubble Radiu  and Vo ume Calc
Cole's Formul  for the ubble radius

 
E Pressure R

V
60J 101.3 kPa (14.7 psi) 5.1 cm 565 cm3 

60J 1.38 MPa (200 psi) 2.18 cm 43.4 cm3 
60J 6.89 MPa (1000 psi) 1.27 cm 8.5
60J 10.3 MPa (1500 psi) 1.11 cm 5.7
60J 13.8 MPa (2000 psi) 1.01 cm 4.3
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III. Concept Validation Test Results 
 

The concept validation test switch, load resistor and 
diagnostics were integrated into the AOPT test stand.  
The diagnostics included two D-dot probes and a 
Rogowski current monitor.  One current monitor was 
placed on the grounded side of the switch.  One D-dot 
probe was integrated into the water line to monitor the 
breakdown voltage of the switch.  A second D-dot probe 
was integrated into the oil section adjacent to the high 
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breakdown strength then decreases from 10.3 MPa (1500 
psig) to 13.8 MPa (2000 psig).  We have not yet found an 
explanation for this phenomenon.  After conditioning the 
electrodes with 45 shots, the voltage breakdown 
statistical variation decreased to ±6.5%. 
 

 
Figure 3.  Average breakdown voltage for a .2cm gap      
     with one standard deviation error bars 

 
The gas or vapor bubble formed at atmospheric 

pressure, 6.89 MPa (1000 psig) and 13.8 MPa (2000 psig) 
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